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The Galerkin criterion within a finite element Weighted Residuals formulation is em- 
ployed to establish an implicit solution algorithm for an initial-value partial differential 
equation. Numerical solutions of a transient parabolic and a hyperbolic equation, ob- 
tained using linear, quadratic and two cubic finite element basis functions, are employed to 
quantize accuracy and confirm and refine theoretical convergence rate estimates. The 
linear basis algorithm for the hyperbolic equation displays excellent accuracy on a coarse 
computational grid and a high-order convergence rate with discretization refinement. 
Good accuracy and a strong convergence rate in surface flux are determined for a non- 
homogeneous Neumann boundary constraint applied to a parabolic equation. The results 
amply demonstrate the impact of the non-diagonal finite element initial-value matrix 
structure on solution accuracy and/or convergence rate. 

INTRODUCTION 

The role that finite element theory may play in computational fluid mechanics 
requires a critical evaluation. The engineers working in aircraft structural analysis 
in the late 1950’s are generally credited with conception of a finite element as a 
discretization and a solution procedure (Ref. [I]). With the concurrent emergence of 
practical digital computer systems, the use of the method mushroomed for static 
analysis of heretofor intractible structural systems. As a historical repetition of the 
legitimization of Heaviside’s operator calculus by the Laplace transform, the 
variational calculus and strain energy minimization soon emerged as the mathematical 
support for this engineering analysis. The theory developed very rapidly, computer 
program practice boomed, and finite element solution methodology became 
synonymous with linearized analysis of impressively complicated structural systems. 

To the outsider, perhaps the dominant visible feature of this developed finite element 
solution methodology was its geometrical flexibility, as exemplified by a mesh of 
triangles subdividing a domain bounded by an arbitrary curve. Naturally, great 
interest was generated in assessing the viability of the method for other fields in 
mechanics. Extension to steady-state heat conduction and potential flow was obvious 
(cf. Ref. [2]), since the energy functional equivalence of the Laplacian is well known. 
A linear transient heat conduction analysis was formulated within the variational 
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framework using the convolution (Ref. [3]). The desire to extend the methodology 
to a more general non-linear problem description, fluid mechanics for example, 
initiated the search for variational principles (Ref. [4]). This was of minimal duration, 
however, upon recognition of the Method of Weighted Residuals (Ref. [5]) and 
rediscovery of the Galerkin criterion (Ref. [6]) as a theoretical basis, alternative to 
the variational calculus. This facilitated direct formulation of a finite element aigo- 
rithm for arbitrary non-linearity, including for example a complete Navier-Stokes 
algorithm and prediction of a recirculating flow (cf. Ref. [7]). Thereafter, the early 
1970’s experienced a great explosion of development of finite element algorithms 
applied to a multitude of non-linear problem classes in fluid dynamics, including for 
example turbulent reacting ducted flows (Ref. [8]), transonic aerodynamics (Refs. 
[9, lo]), and environmental hydrodynamics (Ref. [I 11). 

As opposed to the obvious geometric flexibility, which has become of much less 
significance with the emergence of regularizing coordinate transformations (cf. 
Ref. [12]), the finite element algorithm provides a thoroughly structured procedure 
for transformation of a given partial differential equation into an equivalent larger 
order equation system written on the selected discrete variable distribution. The tools 
available for use in this procedure include calculus and vector field theory, and the 
Neumann boundary condition statement if present is automatically included. Should 
the parent partial differential equation exhibit initial value character, an analytical 
separation of variables yields the discretized form as a system of ordinary differential 
equations, eligible for integration using any appropriate procedure. The significant 
contrast with finite differences therefore, may be in the elimination of the requirement 
to derive a consistent differenced equation system (cf. Ref. [13]). 

That this is indeed a benefit requires affirmation, and this paper addresses the issue 
with specific emphasis on quantization of efficiency, accuracy, and convergence with 
discretization refinement as a function of appropriate influencing parameters, in parti- 
cular higher degree interpolation polynomials. A linear problem class is addressed, 
and accuracy and convergence are measured in the intrinsic energy or L2 norm. The 
theoretical foundation for elliptic equations is well developed (cf. Refs. [14, 151); 
a similar basis exists for first-order and second-order hyperbolics (Refs. [16, 171, 
as well as a parabolic initial-value description (Ref. [l 81). The primary requirement is 
to quantize performance for initial-value problem descriptions, since finite element 
theory introduces a feature distinctly different from finite differences by yielding an 
ordinary differential equation system coupled in the derivatives (superscript prime) 
of the form 

[Cl{9)' = u-1 (1) 

Using finite difference theory, the C matrix in equation (1) would be defined as the 
identity matrix. Finite element theory predicts that [C] be non-diagonal with band- 
width a function of discretization and the degree of the finite element interpolation 
polynomial. The finite element C matrix can be “condensed” to a diagonal form to 
reproduce the finite difference equivalent; this has been common practice to render 
more straightforward the application of an explicit integration algorithm. 
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The intent of this study is to firmly quantize solution accuracy level, and to confirm 
or refine theoretically predicted convergence rates with discretization refinement, 
primarily as a function of the initial-value matrix structure and interpolation poly- 
nomial degree. Since the long-term goal is applications in fluid mechanics, the study 
problem is the advection-diffusion equation. The finite element solution algorithm 
is derived using a hypermatrix formalism that significantly reduces computer storage 
requirements and facilitates inclusion of parameter variations in a convenient manner. 
A brief review is given of the theoretical basis for estimation of convergence properties 
of the algorithm. A tightly controlled sequence of computational experiments was 
conducted for a parabolic and a hyperbolic partial differential equation, and numerical 
solutions generated using Iinear, quadratic and two cubic interpolation polynomials 
within the finite element algorithm. An implicit finite difference procedure is employed 
to solve the resultant ordinary differential equation system. Solution accuracy is 
quantized and convergence rates with discretization refinement assessed as a function 
of Dirichlet, Neumann, and radiation boundary conditions as well as initial-value 
matrix structure. In all cases, Richardson extrapolation is employed to determine 
integration step-sizes for which truncation error is an inconsequential contribution 
to the measured solution error. Finite element results are compared appropriately 
to finite difference solutions. The summary concludes that finite element theory does 
display desirable features when employed to derive numerical solution algorithms 
for linear initial-value problem descriptions. 

FINITE ELEMENT SOLUTION ALGORITHM 

Consider the scalar field q(xi , t), the transient evolution of which is required deter- 
mined on n-dimensional space R” spanned by the xi coordinate system, 1 < i < n. 
The domain of the solution is 52 = Rn x t E xi x [tu , t) with closure 2Q =: RTi-l x t. 
On Sz, q is the solution to the advection-diffusion equation 

% 
w7) = at + axj i(qu,) - & [kg] +.f’= 0 

where uj is the n-dimensional velocity vector, k is the effective diffusion coefficient, 
and f is a source/sink term. The boundary condition constraints applicable on 2Q 
are contained within 

24 
4q) = a1q + k axj ~ Tzj i us = 0 (3) 

where ri is the local outward-pointing unit normal vector, and the ai are specified 
coefficients that may depend upon time. An initial condition on Q, = Rn x t, is 
required as 

(4) 
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The fundamental concept of a finite element algorithm is the assumption of known 
functional dependence for q(xj , t) on disjoint, contiguous subdomains of D. These 
“computational control volumes” are termed finite elements (of J2) with domain 
Sz, = R,” x t. The common procedure is to assume q adequately interpolated on 
a, by a truncated power series of the form 

In equation (5), the elements of the row matrix {&(x~)}~ are linearly independent, 
kth degree polynomial functions of xi , so constructed that they form a cardinal basis 
(cf. Ref. [14, p. 481). The {&) p assess compact support, which greatly simplifies the 
integral operations to follow, and their construction on elementary finite element 
shapes is quite straightforward (cf. Ref. [19, Chaps. 7-81). As observed in Equation (5) 
separation of variables has been assumed valid, and the matrix elements of {Q(t)}e 
are the (unknown) series expansion coefficients. These correspond to the temporal 
evolution of qe at the node points of the finite element discretization of R”. 

The Galerkin-Weighted Residuals formulation provides the basis for developing 
an algorithm, for determination of the expansion coefficients, that degenerates in the 
special case of a linear elliptic differential equation to extremization of an energy 
functional. Quite directly, the approximation function equation (5) is introduced 
into the differential statements (2)-(3). Since equation (5) is not the solution, the error 
that is induced in this operation is rendred orthogonal to each member of the approxi- 
mation function set (&(xJ} in the classical manner. Since the {&(xJ) enjoy compact 
support, the integrals are non-vanishing only on Qn, , which greatly simplifies the 
algebra. Identifying the mapping function S, more familiarly termed the assembly 
operator, which carries the integral operation on L?, onto a, the orthogonality require- 
ment is directly expressed as 

The order of equation (6) is identical to the total number of node points at which the 
transient solution, i.e. Ce {Q(t)}& , is to be determined, and X is a convenient scalar 
multiplier. Independent of the dimension n of R” (the space spanned by the xi coordi- 
nate system), for equations (2)-(3) equation (6) yields an ordinary differential equation 
system for solution of Ce (Q(t)}p = {Q}, of the form 

(7) 

The superscript prime denotes (ordinary) differentiation with respect to time. For 
equations (2)-(3), the specific forms for the various matrices defined in equation (7) 
are 
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and h has been set to cancel the boundary contribution, generated from use of a 
Green-Gauss theorem on the first term in equation (2), with the corresponding term 
in equation (3), as they appear in equation (6). The domains of integration in 
equations (8)-(11) are only R,“, and by definition aRen = Rfesl; hence, all integrals 
can be evaluated once and for all. The n-dimensional velocity field ui , as well as 
k and f, are assumed interpolated on 52, using equation (5). Index summation is 
implied on all repeated tensor subscripts, and the order and specific forms taken are 
strictly dependent upon n and k, the finite element polynomial degree, equation (5). 
The integrals can be performed analytically for n = 1 for all k, 1 < k < 3; they can 
be performed numerically to any required accuracy for all n and k. Appendix A 
presents a summary of establishment of appropriate cardinal bases and evaluation 
of the element matrices (8)-(11) for select k and ~1. 

INTEGRATION ALGORITHM 

Equation (7) is solvable using any (finite difference) numerical integration algorithm. 
Specifically, it may be explicit, implicit, single-step, multi-step and/or predictor- 
corrector. The salient features may be illustrated directly by employing the familiar 
single-step implicit Euler algorithm 

In equation (12), j is the time-step index, h is the integration step-size and 0 is a para- 
meter 0 < 0 < 1 controlling implicitness. For 0 = 0, equation (12) is explicit Euler, 
8 = 1 is fully implicit or backwards Euler, and 0 = l/2 yields the familiar trapezoidal 
rule. For B non-zero, a modified Newton iteration algorithm can be established, that 
is equally applicable to non-linear problem specifications, in the form 

The dependent variable in equation (13) is the iteration vector, defined as 
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where p is the iteration index, and I 3 0 is an integer that retards evaluation of the 
Jacobian as an economy measure, should it indeed be a function of the dependent 
variable. The right side of equation (13) is equation (7) evaluated for the pth iterate 
after substitution of equation (12) to replace the ordinary derivative matrix. By direct 
substitution, 

where 

{G+, = $le <<Q>;+I - fQ>J + 44 g&‘+~ + 0 - @{geMI (15) 

Note that equations (15)-(16) are defined only as inner products on elements, with 
the assembly operator yielding the equivalent global expression. The vanishing of {F}, 
to within a specified definition of computed zero, yields equation (13) homogeneous, 
hence convergence of the iteration process for any evaluation of the Jacobian. The 
initial estimate {Q}:,, for any iteration can be determined using 13 = 0. 

Equations (13)-(15) could be directly rearranged to yield a non-iterative algorithm 
for a linear problem, but formation of the required Jacobian is unaffected. By defi- 
nition, the Jacobian is the partial derivative of equation (15) with respect to {Q}. Hence, 

[Jl = z [[cl, + he([u], + [me) + (+$ + he a([u!&,[K1') ) {Q}jel] (17) 

where the final term accounts in general for a contribution stemming from implied 
non-linearity, for example in k, for the present case. Equation (17) illustrates the 
analytical expression obtainable using the presented formalism, as well as the role 
of retarded evaluation at time step j - I if required, see equation (13). All operations 
are again limited to matrix inner products on an elemental basis, hence implicitly 
independent of the dimension n of R". The rank of [J] is obviously equal to the order 
of {SQ}, and specific (Dirichlet) boundary constraints which reduce the order below 
the total number of nodes in the discretization can be applied at any convenient point 
in the solution process, including within the evaluation of {F}. 

ERROR AND CONVERGENCE MEASUREMENT 

The express purpose of this analysis is to measure solution error for the contri- 
bution of finite element theory applied to an initial-value problem, and to establish 
and/or confirm expected convergence rates with discretization refinement and other 
appropriate parameters. Since equation (2) is a conservation law statement, 
appropriate accuracy measures include the integral over D of q and 2/4- Hence, 
using equation (5), define 
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using specific recognition of the independence of {Q(r)), from the integrations. 
Convergence properties of a finite element algorithm are traditionally measured 

in an “energy” norm (cf. Ref. [15, Chap. 21). The solution energy corresponds to the 
sum of quadratic terms in the functional whose extremization yields the corre- 
sponding differential equation statement for a linear boundary value problem, i.e., 

%‘> 9) = ; jRm (a Vq * VP + p qp) dT P) 

where iy. and /3 are constants of the motion. Generalizing the concept to include energy 
at the boundary, the finite element energy functional appropriate for equations (2)-(3), 
using equation (5) is 

The energy in equation (21) is a function of time, and [K], is defined in equation (10). 
The square root of equation (21) is the H1 Sobolev norm. 

Convergence properties of a finite element algorithm are expressed in terms of the 
energy norm, equation (20), or equivalently, the I-P norm. Briefly (cf. Ref. [15, Chap. 2 
and 5]), for a linear boundary value problem, the finite element-generated approxi- 
mation to system energy is extremum in comparison to all other numerical evaluations 
including finite differences. Furthermore, since the error is orthogonal to the solution 
surface, as enforced using equation (6), the energy in the error is equal to the error 
in the energy. Finally, the error in the energy E(q - qe , q - qe) is bounded from 
above by a constant, independent of discretization, by the measure (length, area, 
etc.) of the largest element in the discretization raised to an exponent, and a norm 
related to the maximum (required) derivative of the solution. Hence, generalizing 
to a transient description, convergence with discretization refinement should occur 
in the error energy norm as 

In equation (22), k is the lowest complete degree of the finite element interpolation 
polynomial {&(x~)}, equation (5), 2m is the highest order derivative in equation (2), 
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d, is the measure of the largest finite element on R”, 01 = k + 1 is related to the 
required smoothness of the exact solution, and 

(23) 

For C a constant independent of A, , and equation (23) set by the problem statement, 
numerically measured convergence in energy, as obtained by measuring equation (21), 
can confirm adherence to the exponent 2(k + 1 - m) in equation (22). For the second 
order partial differential equation (2), m = 1, and the exponent should approximate 2, 
4 and 6 for linear, quadratic, and standard cubic functions, k = 1,2, 3 respectively 
in equation (5). 

For the parabolic form of equation (2), particular interest lies in evaluating the 
accuracy with which the dependent variable is determined on i?Q, where at a gradient 
boundary condition is applied. Two max norms of specific use are, therefore, 

e, = max / qe - q I (24) 

dqe 4 e2 = max dx, - dx, (25) 

where x, corresponds to the coordinate normal to the closure segment XI, . 
The focus of this study excludes consideration of integration algorithms alternative 

to equation (12) and 6 = l/2 was used exclusively. All computations were performed 
in double precision. To assure that truncation error was not clouding measured 
accuracy, Richardson extrapolation (cf. Ref. [20]) was employed to generate a higher- 
order accurate solution at appropriate time points. The cited error norms were 
evaluated using both finite element solutions, and the integration step-size was 
adjusted to cause truncation error to be at least two digits removed from convergence- 
measuring significance in the error norm. 

RESULTS 

Numerical determination of solution accuracy and convergence rates for the finite 
element algorithm, equation (6), are required for dominantly hyperbolic and para- 
bolic forms of equations (2)-(3). On two-dimensional space, the elementary finite 
element cardinal basis functions, equation (5) are linear polynomials on a triangular, 
and bi-linear functions on a quadrilateral element geometry. Using the natural 
coordinate system shown in Figure 1, the latter is 

(1 - %N - 72) 
(1 + %)(l - 72) 
(1 + %)(l + 72) 

(1 - 771x1 + 72) 

(26) 
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Alteration of the node numbering permutes the locations of the elements of (&+}, 
the Q coordinate system is normalized, and the element shape illustrated also results 
from an isoparametric transformation of a general curved-sided quadrilateral element 
(cf., Ref. [19], Chap. 8). 

-Xl 
FIG. 1. Natural coordinate description for quadrilateral finite element. 

Inserting equation (26) into equation (8), performing the integrals and defining 
a “standard” matrix named [B200], yields the initial-value element matrix 

4 2 1 2 

[Cl, = O,[B200] = fl, & I 4 

2 

4 
(sym> 1 1 2 

4 

(27) 

In equation (27), d, is the measure (area) of the element, and [SZOO] is an integer 
array in a DATA statement. Hence, the words of storage required is equal to the 
number of elements Sz, on R2 plus eleven. In the definition of [SZOO], the B signifies 
a matrix on two-dimensional space, 2 states that two {&} are defined in the matrix, 
and the two O’s are Boolean counters indicating that neither of the {&} are differen- 
tiated. Correspondingly, A and C prefixes denote matrices on one- and three-dimen- 
sional spaces, and non-zero counters indicate appropriate differentiation. 

The impressed velocity field is assumed divergence free. Hence, in equation (9) 
after using the chain rule and noting that {Ui}z{&} IS a scalar, the two-dimensional 
convection matrix becomes 

As discussed in Appendix A, the integral in equation (28) defines a square hypermatrix 
of global order four with elements that are themselves column matrices of order four. 
Employing the matrix naming convention, the bilinear function equivalent for 
convection is 

[U], = d,(U): [B3001] + A$‘:: [B3002] (2% 
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The defined matrices are given in Appendix B, and {U}, and { V}e are nodal arrays 
of the xi scalar components of uj on Q, . Storage required for the convection matrices 
is 128 words, which could be reduced to 32 by an efficient array permutation algorithm. 

By similar operations, and assuming the diffusion coefficient k, variable, equation 
(10) is 

[Kle = d,{K)3: [B3011] + d&4200] (30) 

The [B3011] is symmetric and requires 40 words of storage, and [A2001 results for 
the boundary condition constraint since aR2 = RI, i.e., a one-dimensional element. 
These matrices are also listed in Appendix A and Appendix B, and the measure d, 
for [A2001 corresponds to the length of the one-dimensional closure segment. The 
final required matrix is equation (II), 

{Y>, = 4ww~‘), + 4%{A1Oj (31) 

wheref, is assumed variable with nodal values {F}e , [B200] was identified in equation 
(27), and {AlO} is the corresponding one-dimensional boundary condition matrix, 
see Appendix A. No additional storage is required. The developed forms are appro- 
priate for uniform discretization of (2. Appendix B also lists the corresponding defi- 
nitions for non-square elements. Only the storage requirements for d, and [B3011] 
are doubled, and the diffusion coefficient can exhibit directional character with no 
additional penalty. The hypermatrix formalism is extendible to use with curved-sided, 
isoparametric finite elements as well; however, this lies outside the scope of the present 
development. 

Primary focus is on accuracy and convergence of the finite element algorithm for 
the limiting cases of equations (2)-(3). The hyperbolic limiting case is achieved by 
setting k E 0; assuming only vanishing gradient boundary conditions are employed, 
and that f vanishes identically, equation (7) becomes, for a uniform grid, 

f [[~-33WQ): + Wf P30011 + {VI; [~3OW){QLl = (0) (32) 

Note the analytical similarity between equations (32) and (2). With a little experience, 
equations of the form (32) can be established directly from the differential equation 
statement. Similarly, for the matrix iterative solution, the Jacobian, equation (17) is 

[J] = f[[B200] + hB({U): [B3001] + {V}; [B3002])] (33) 

The test case is advection of a concentration packet across the diagonal of a square 
domain by a constant velocity field. The initial distribution was developed using 

q(Ae,O) = 1 + co,+ (3 + 3) n = 1, 2,..., A4 
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where M is an integer which spreads the distribution over 2n A, , where d, is the 
measure of the uniform grid. The distribution is then rotated about the maximum 
to produce the two-dimensional initial condition q(xi , 0), equation (4). The least A4 
for which the distribution can approximate an inflection point is 5. Figure 2a displays 
the resultant initial distribution on a 32 x 32 finite element grid, and the numerically 
computed distributions after 50, 100 and 150 time steps for a Courant number 
equal to 0.1, where 

UAt c=-- 
A, (35) 

The peak value is retained to within 1 % indicating the algorithm is essentially free 
of numerical diffusion. The trailing wakes, which are indicative of dispersion error, 
have maximum amplitude h2 % of the peak value and nominal preserved wave- 
lenth 2 A,. For comparison, Fig. 2b shows the results obtained using the finite 
difference, Crank-Nicolson equivalent for equation (32). As mentioned in the Intro- 
duction, and as will become immediately apparent, this is achieved by rendering [Cl, 
the diagonal matrix [C], . From equation (27), 

(36) 

as obtained either by row-wise summation or normalization of the diagonal entries 
in [Cl, . This operation literally destroys the fidelity of the previous solution for this 
discretization, concerning both numerical diffusion and dispersion. Of course, dis- 
cretization refinement or decreasing the Courant number will improve the accuracy 
of all solutions in a predictable manner, as will be documented. Finally, for com- 
parison, Fig. 2c presents the results obtained using the finite element form, equation 
(32), for a factor of two increase in Courant Number to 0.2. These results, produced 
in half the computational time, are superior to those produced using equation (36). 

These solutions display exact symmetry about the plane containing ui and bisecting 
the peak of the distribution. Hence, determination of solution accuracy and con- 
vergence with respect to discretization refinement, Courant number, degree k of the 
finite element approximation equation (5) and initial-value matrix [Cl, structure is 
facilitated by solution of the one-dimensional equivalent. In the present context, 
and in comparison to equation (32) the algorithmic statement is 

; &42’W{QX + WI: L430011{Q)el = 101 

The defined A-prefix matrices are given in Appendix A. For the case of a linear 
finite element function, k = 1 in equation (5) writing equation (37) at the element 
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t 1 1 ’ ’ 
F 
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level, for the element spanning the space between the J - 1st and the Jth nodes, 

Similarly, for the adjacent element connecting the Jth node to the .I + 1st node, 

13 (:I 44 :Ig+,i + l;+,i’& [[A; I$ 1 g+,i ={O) (38b) 
Assuming a uniform discretization, the assembled matrix equation (37), written at 
the jth node, is 

A -2 
6 

2, 1 
1, 4, 1 

\:I e;-1 
1, 2 J ;j+l I : . 

-2uj-1 - uj ) 
-uj-l - 2Uj) 

2uj-1 + uj 
2Uj + Uf*lUj-l 
-uj - 2uj,l, 

- U&l 
uj + 2 t,+1 

= Kv 

~ 
(39) 

Equation (39) is then directly re-expressed in the (finite difference) recursion form, 
assuming a uniform velocity, 

; 4 B-1 + 4Qi + Q,+J + & [Qj,, - Qj-11 = 0 (40) 

Performing a Taylor series expansion of equation (40) about x = xj yields 

Hence, equation (37) is a spatially fourth-order accurate representation of equation (2), 
achieved using elementary linear basis functions and the equivalent of central differ- 

581/343-2 



304 BAKER AND SOLIMAN 

encing for the advection term. This accounts for the absence of numerical .diffusion 
indicated for the two-dimensional solutions, Fig. 2a. Inserting the implicit integration 
algorithm, equation (12), into equation (40) and denoting QjS = Q(xj , n dt) yields 

L(Qj”> = ; [<Qi”-:’ - Q,“-,> + 4(Q;” - Qj”> + (Q,“,:’ - Qj”,,>l 

+ ; NQi”,: - Q,“-:‘> + (1 - ‘WQj”,l - Q;-,>I = 0 (42) 

where C is the Courant number. To examine stability, assume a Fourier expansion 
for Qin as 

Qjn E gnei(r\jAz) (43) 

where i = dx. Substituting equation (43) into equation (42), setting /3 = l/2 
and simplifying yields for the amplification factor g, 

1 + 8 cos(X Ax) - i(3C/4) sin@ dx) 
g = 1 + 3 cos(h dx) + i(3C/4) sin(X dx) (44) 

Since the numerator and denominator are complex conjugates, the magnitude of g 
is unity for all h, dt and fix. Hence, the algorithm is neutrally stable with neither 
amplification nor damping of waves, as evidenced in the illustrated solutions. In 
contrast, the diagonalizing operation that yielded equation (28), when applied to the 
recursive relation form for one-dimensional space, yields for equation (42) 

Q n+l - Qj” = - $ [e(Qj”,:’ - Q:?;) + (1 - @(Qi”,l - Qi”-,)I (45) 

Equation (45) is immediately recognized as the Crank-Nicolson, second-order 
accurate finite difference algorithm for equation (2). Hence, the differences in numerical 
diffusion evidenced in the results in Figure 2 can be explained, at least in part, in 
terms of order of accuracy. 

A definitive assessment of the accuracy and convergence can be achieved in terms 
of the error norms established in the previous section. For reference, Figure 3a-j 
presents computed profiles of the wave, following advection over a solution domain 
of span 4M, for A4 = 10 and for various Courant and Reynolds numbers, finite 
element (FE) and finite difference (FD) initial-value matrix forms, and for k = 1 
and 2 in equation (5). The dashed curves correspond to the analytical solution. 

Of particular interest is the comparison between Figures 3c and 3i. In both cases 
there is approximately 4 % loss in the peak value. For Figure 3c, this loss is due to the 
numerical diffusion associated with the second-order accurate Crank-Nicolson 
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Fro. 3. Advection of a concentration packet. (a) Initial condition, dashed line is analytical 
solution. (b) Finite element, k = 1, C = 0.4, Re = co. (c) Crank-Nicolson, C = 0.4, Re = co. 
(d) Finite element, k = 2, C = 0.4, Re = to. (e) Finite element, k = 1, C = 0.8, Re = co. (f) 
Finite element, k = I, C = 1.2, Re = to. (g) Finite element, k = 1, C = 1.6, Re = co. (h) Crank- 
Nicolson, C = 1.6, Re = co. (i) Finite element, k = 1, C = 0.4, Re = 102. (j) Finite element, 
k==I,C=0.4,Re=104. 
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X 

FIG. 3 - Continued. 

equation (45). When the diffusion coefficient is included, for Figure 3i, the governing 
equation assumes the form 

1 
4t + %I, - j&q 422 = 0 

The finite element algorithmic statement for this equation, in comparison to equation 
(37), is 

(47) 

Both advection and diffusion are present in equation (47), and the 4 % loss in the 
peak value in Figure 3i is associated with a Reynolds number of 100. Note in this 
case that the fourth-order accurate finite element integration scheme is essentially 
free of numerical diffusion as evidenced by the vanishing of the trailing wakes of 
Figure 3c. 

Based upon results of this type, Figures 4-6 present accuracy and convergence 
rates as determined numerically in the energy and p norms, equations (18)-(21). 
In Figure 4, the E and pz norms appear rather insensitive measures of the differences 
illustrated in Figures 3b and c. The illustrated quadratic convergence rate with dis- 
cretization refinement, for both FE and FD forms, is in agreement with the con- 
vergence exponent in equation (22) taking the form 2(k + 1 - m) * k + 1 = 2, 
as derived by Oden and Reddy (Ref. 1181) for a linear hyperbolic equation. The p1 
norm does respond definitively to the solution differences; the FD convergence 
rate is 4, while the FE rate is 5, and for A4 = 40 the FE results are a factor of 5 more 
accurate. It is important to note that this increase in accuracy accrues at no additional 
cost for an implicit algorithm. Note also that accuracy for the coarse grid solution, 
M = 10, is better than that predicted by strict adherence to the computed con- 
vergence rates. 

To quantize dispersion error, evaluation of the p1 (and pJ norm was split left and 
right of the computed peak, and convergence with discretization refinement and 
Courant number determined. For linear and quadratic finite element functions, 
k = I, 2 equation (5) convergence with discretization refinement in the factored p1 
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FIG. 4. Accuracy and convergence with discretization refinement in energy, sum and sum-squared 
norms, hyperbolic equation, linear elements. 

norm is uniformly quadratic, see Figure 5. For linear elements, the absolute error in 
the FD form is 5 times that of the FE form. Most interestingly, for this problem, 

the quadratic element solutions are insensitive to initial-value matrix structure, with 
an accuracy comparable to that produced by twice as many linear elements. Of course, 
since quadratic elements possess an interior node, the rank of [J] (hence work required 
to generate a solution) for M = 20 quadratic and M = 40 linear elements is identical. 
On this basis, the quadratic element solution accuracy is at best a marginal improve- 
ment over that of the linear element. Essential quadratic convergence with Courant 
number, i.e., the trapezoidal integration algorithm, was confirmed in both factored 
p norms, see Figure 6. On all comparison bases, therefore, the performance of the 
implicit finite element algorithmic solution form, for equation (2) dominantly hyper- 
bolic, appears superior to the equivalent-complexity finite difference form. 

Corresponding evaluations are required for equation (2) parabolic, as obtained by 
setting ui = 0. As in the hyperbolic case, examination of the one-dimensional state- 

ment can best facilitate the study. The critical focus is on predicting algorithm per- 
formance at a boundary whereat equation (3) is not identically satisfied; hence the 
majority of results are generated for equation (2) homogeneous. To preclude exact 

interpolation of a solution for any specific k, and to demonstrate the facility of mixed 
interpolation, the problem statement is cast on R2 spanned by a polar coordinate 
system. The finite element statement, equations (6)-(7), remains unaltered. However 
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the specific matrix forms, equations (8)--(11), will uniquely reflect this point. For 
example, the initial value matrix is 

[Cl, = JJR2 {dd{W r dr de (48) 

Since r is interpolated exactly on Sz, by k = 1 in equation (5), and denoting (R}e as 
the element matrix of node coordinates, equation (48) becomes 

[Cl, = 277We’ JR1 {M4J{ddT dr L 

= 27T d,(R): [A3000] (49) 

The order and specific entries in the hypermatrix [A30001 depend uniquely upon k 
as discussed in Appendix A for 1 < k < 3. The several [A3000] are stored in BLOCK 
DATA; the additional storage requirement is only three words per element. Proceeding 
through similar operations for equations (lo)-(ll), assuming for simplicity that f 
vanishes and k and d, are uniform, and cancelling 27~ throughout, the statement of 

2 
% 

0 I FD 
q 2 FE 

5) Q 2 FD 10-3 1 I I 

Ei k Form 

N 
-7 0 I FE 

l/80 I/40 l/20 l/IO I/J 

DlSCREflZATlON REFINEMENT- I/M 

FIG. 5. Accuracy and convergence with discretization refinement in factored sum norm, hyper- 
bolic equation, linear and quadratic finite elements. 
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FIG. 6. Accuracy and convergence with Courant number in factored sum and sum-squared 
norms, hyperbolic equation, linear elements. 

the finite element algorithm comparable to equations (32) and/or (37) for solution of 
the parabolic form of equations (2)-(3) is 

The last two terms in equation (50), which represent the finite element equivalent of 
the gradient boundary condition constraint equation (3), warrant comment. Of 
primary impact, since these constraints are imbedded directly within the statement for 
solution of the interior field, the influence of boundary constraints is not retarded 
by a time step but enforced instantaneously. For one-dimensional elements, the 
integrals on i3R,’ in equations (lo)-(11) become evaluations at a point; hence, since 
the {&} are cardinal bases, they produce the Kronecker delta, and Jda = 2rR, 
where R is the coordinate radius at which the gradient is applied. Therefore, also, 
[AO] and {AO) define the matrix equivalent of the Kronecker delta, and possess only 
one non-vanishing element (of unity) independent of k, equation (5). These obser- 
vations infer that the finite element equivalent of a gradient boundary constraint 
must be consistent for use with all order-accurate interpolations on Qn, , as will be 
confirmed. The matrices are listed in Appendix A. 

The test problem for accuracy and convergence evaluations is an axisymmetric 
hollow cylinder loaded convectively on the interior surface. The energy norm, 
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equation (21), for the flux dependent upon the (computed) surface value of q, is 
dominated by the boundary contribution, a, in equation (3), see also equations (10) 
and (41). Alternatively, for the fixed flux case, a, s 0 in equations (3) and (21). 
For either case, convergence in energy is theoretically predicted by equations (22). 
Table 1 presents the anticipated convergence exponents for m = 1 in the three 
pertinent norms for the range of k evaluated. Note that k = 3’ corresponds to a 
cardinal basis generated using Hermite cubic interpolation, wherein derivative degrees 
of freedom are employed (cf. Ref. [74]). Hence, since the derivatives are interpolated 
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FIG. 7. Accuracy and convergence with discretization refinement in energy norm, parabolic 
equation, linear quadratic and two cubic finite elements. 

one-degree lower than the function, the convergence properties should correspond 
more closely to those of quadratic interpolation except in e2 . The remaining cardinal 
bases are generated using Lagrange interpolation, see Appendix A. 

The summary assessment of numerically measured accuracy and convergence 
rates with discretization refinement are presented in Figures 7-l 1. To confirm practice 
for the transient equation solutions, Figure 7 presents the numerical results generated 
for the asymptotic steady-state solution of equation (50), for both fixed and con- 
vective Neumann boundary conditions. Essentially exact adherence to the theoretically 
predicted convergence rates is verified. The absolute error for the fixed case is just 
slightly larger than for convection, and a dramatic improvement in accuracy is evi- 
denced with an increase in degree of Lagrange interpolation. Accuracy of the Hermite 
cubic solution is just marginally poorer than the quadratic. Figure 8 presents corre- 



FINITE ELEMENT INTEGRATION ALGORITHM 311 

sponding results generated at the initiation of the transient solution of equation (50), 
with curves of even integer slope faired through the refined grid solutions. All but the 
Hermite cubic demonstrate anticipated convergence rates, and all but the linear 
element solutions are more accurate on a coarse grid than predicted by strict adherence 
to these rates. As might be expected, the absolute level of inaccuracy is uniformly 
greater than for the steady-state solutions. It should also be noted that convergence 
in energy was not monotonic for any k > 1 for this case, as theoretically predicted 

.- 
l/64 VI6 l/4 I 

DISCRETIZATION REFINEMENT - M-’ 

FIG. 8. Accuracy and convergence with discretization refinement in energy norm, transient 
parabolic equation, linear, quadratic and two cubic finite elements. 

and measured for the asymptotic steady-state solution. The relatively poorer overall 
performance of the Hermite cubic is probably the direct consequence of the extremal 
surface derivative (hence, degree of freedom in the solution matrix) existent at the 
start of a gradient boundary condition-driven problem. 

The impact of diagonalizing the initial-value matrix structure of the finite element 
algorithm, equation (50), was evaluated. As shown in Figure 9, the favorable con- 
vergence rates measured for the quadratic and cubic elements in Figure 8 have been 
obliterated. The Hermite cubic and linear element convergence rates are essentially 
unaffected by diagonlization of [Cl, , but the absolute solution error is marginally 
larger in both cases. A point in defense of a diagonalized initial-value matrix structure, 
as results for example in a classical finite difference algorithm, can be made when 
employing linear elements and an explicit integration algorithm. In this case, the 
maximum allowable integration step-size for which absolute stability can be main- 
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tained (cf., Ref. [20]) is limited by the largest eigenvalue of the ordinary differential 
equation (50). Shown in Table 2 is the maximum eigenvalue spread computed for 
equation (50) for several discretizations and interpolating degrees as a function of 
finite element and finite difference initial-value matrix structure. The diagonalization 
procedure decreases the spread by a factor of roughly 2.5. Hence, the maximum 
explicit integration step-size for the latter is correspondingly larger. 

Symbol EE.Drgrec(k 

: 

l/64 VI6 l/4 I 

g DISCRETIZATION REFINEMENT- M-’ 

FIG. 9. Accuracy and convergence with discretization refinement in energy norm, transient 
parabolic equation, finite difference initial-value matrix structure. 

TABLE 1 

Theoretical Convergence Rates in Three Error Norms for Finite Element 
Solution of a Linear Parabolic Equation at Steady-State 

Norm convergence rate 

Finite element Energy Function max Gradient max 
degree - k E 6 es 

1 2 2 1 

2 4 3 2 

3 6 4 3 

3’ 4 3 3 

The final evaluation is determination of finite element solution accuracy and con- 
vergence in the max norms e, and e2, equations (24)-(25), at the location on aQ 
whereat a non-homogeneous Neumann constraint is applied. The evaluations shown 
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TABLE 2 

Eigenvalue Spread of Ordinary Differential Equation (50) 
as Function of Initial-Value Matrix Structure 

k M Finite element Finite difference 

1 2 2.90 1.13 
4 14.7 5.17 
8 62.7 21.2 

16 255. 85.2 

2 2 17.1 8.08 
4 76.7 32.2 
8 317. 129. 

16 1277. 512. 

3 2 50.4 26.9 
4 220. 105. 
8 900. 422. 

16 3622. 1687. 

3' 2 11.4 3.80 
4 52.9 16.8 
8 221. 68.8 

16 892. 277. 

'mbol F.E.Degree - 

i ,,.J , , ?!J~,N;;gg~t 
l/64 l/l6 l/4 I 

2 DISCRETIZATION REFINEMENT - M’ 

FIG. 10. Accuracy and convergence with discretization refinement in max norm e, at boundary, 
parabolic equation, linear, quadratic and two cubic !inite elements. 
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in Figures 10-l 1 were established at the asymptotic steady-state solution of equation 
(50). Figure 10 illustrates convergence rates and absolute solution accuracies in e, 
that are essentially identical to those measured in E, Figure 7. The quadratic and cubic 
convergence rates are higher than anticipated. Similarly, measured convergence in 
the surface gradient max norm e, is higher than expected, see Figure 11 and Table 1. 
except for the Lagrange cubic which agrees exactly. Two items of particular note 

N 

i I 1 I 
l/64 l/l6 l/4 

DISCRETIZATION REFINEMENT -M-l 

P . 

FIG. 11. Accuracy and convergence with discretization refinement in max norm e2 at boundary, 
parabolic equation, linear, quadratic and two cubic finite elements. 

are that the linear element gradient convergence at the boundary is superior to that 
of the entire solution on Q (2.4 vs. 2.0), and that the Hermite cubic, which contains 
dq/dx, as a dependent variable, produces a definitely more accurate solution and a 
high convergence rate for surface flux. 

SUMMARY AND CONCLUSIONS 

An implicit finite element numerical algorithm for solution of initial-valued para- 
bolic and hyperbolic partial differential equations has been evaluated. Numerical 
tests were performed to quantize accuracy and assess convergence as a function of 
discretization refinement, boundary conditions, degree of the finite element inter- 
polating polynomial, and initial-value matrix structure for select parabolic and hyper- 
bolic equations. In all cases tested, the non-diagonal initial-value matrix produced 
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by finite element theory yielded an algorithm of superior performance for no additional 
computational effort within an implicit integration algorithm. The use of a diagonal 
structure was assessed to destroy the favorable convergence obtained with higher 
degree interpolation for the parabolic equation. The overall accuracy and convergence 
of the Hermite cubits was disappointing. A non-homogeneous gradient boundary 
condition is not time-retarded within the finite element algorithm, and was observed 
to produce high order convergence on the boundary of application. These numerous 
computational features indicate finite element theory viable for development of 
numerical solution algorithms for initial-boundary value problems. 

APPENDIX A: CARDINAL BASES AND HYPERMATRIX FORMULATION 

Efficient utilization of the uniformity of the finite element algorithmic procedure 
is dependent upon formulation of cardinal basis functions and a unified notation. 
The concepts, which are extendible to multi-dimensional space, can be effectively 
illustrated one-dimensionally. Figure A.1 shows a one-dimensional element with 

FIG. A. 1. One-dimensional finite element coordinate systems. 

vertex nodes I and 2. Linear interpolation of the distribution of a variable q(x) over 
R,l is written directly as 

The coefficients in (A. 1) are easily reexpressed in terms of the nodal values Qi of qe as, 

a44 = Q, [ 1 - +] + Q, [+-I 
e e 

(A.21 
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where the origin of Z is node 1. Rewriting equation (A.2) in the matrix form of 
equation (5) yields the linear one-dimensional function set {&(X)} definition 

64.3) 

Equation (A.3) defines the linearly dependent, normalized natural coordinate 
system of use for one-dimensional space, i.e., {<> = {dI(Z)}. The coordinates of the 
ti system are also shown in Figure A.l, and all cardinal bases on R,’ can be written 
as polynomials on the li . Equation (A.l) for general order interpolation becomes 

q&c) = a + b $ + c (<-)” + d (+)” + 3.. 
e e e (A .4> 

Equation (A.4) rewritten in terms of the cardinal basis { (bk} is 

for both Lagrange and Hermite constraints on equation (A.4). Figures A.2 illustrate 
locations and preferred numbering (to minimize matrix bandwidth) of additional 
nodes (x) required to evaluate the general expansion coefficients in equation (A.4). 
The resultant cardinal bases, as specified by equation (A.$ are directly determined as 

k = 1: (‘4.6) 

k = 2: {A> = 
/ 

51cx1 - 1) 
45152 i 

LG% - l)( 
(A.71 

k = 3: (A-8) 

64.9) 

Note that only for the Hermite cubic, k = 3’ (which involves derivative degrees of 
freedom as well as the dependent variable at vertex nodes), does the basis function 
depend upon the element measure d, . Also note that all elements in equations (A.6)- 
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(A.9) could be written in terms of 5, or & only, since they are simply related. The 
selected forms display parent symmetry. 

The significant utility of the cardinal basis is that the integrals required to establish 
the finite element algorithm, equations (7)-(ll), are all readily evaluated since 
arbitrary polynomials in ii integrate in closed form as 

(A. IO) 

Therefore, although evaluation of the integrals can be tedious, with the advent of 
the hypermatrix formalism they need be formed only once and thereafter reside 
as a DATA statement. 

CM 
d I 

x-4 
I 2 3 4 2 4 

FIG. A.2. Node locations for one-dimensional finite elements spanned by various degree inter- 
polation polynomials {&}. (a) Linear, k = 1. (b) Quadratic, k = 2. (c) Cubic Lagrange, k = 3. 
(d) Cubic Hermite, k = 3’. 

As an example, the elemental initial value matrix [Cl, , equation (8) formed using 
quadratic interpolation on a one-dimensional space spanned by a Cartesian coor- 
dinate becomes 

Expanding and with repeated use of equation (A. lo), the result is 

(A.12) 

Equation (A.12) illustrates definition of the standard matrix nomenclature. In parti- 
cular, for the matrix [A2002], the A signifies a matrix on one-dimensional space 
the first 2 indicates two cardinal bases form the matrix, both O’s indicate neither basis 
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is differentiated, and the final 2 indicates the bases are quadratic, k = 2 in equation 
(A.5). Since [A20021 is element independent, the integers and divisor reside in a 
DATA statement. 

To illustrate mixed interpolation, reevaluate [Cl, on one-dimensional space spanned 
by a polar coordinate. Then, in equation (8) 

dr = r dr = {R}: {cjl} dX 

which is exact. Hence, with scalar rearrangement 

(A.13) 

1)) dX (A.14) 

From equation (A. 1 l), the outer product on {42) forms a square matrix; hence, in 
equation (A.14), premultiplication by {I$~} forms a square matrix with elements which 
are themselves column matrices. Invoking the definitions presented, and employing 
equation (A.10) the initial value matrix becomes 

[Cl, = d,(R): [x430002] = $ {R}: (A.15) 

The hypermatrix [A300021 is element-independent, and the order of each hyper- 
element depends upon the contraction matrix. Note that if the elements of {R}e are 
a uniform constant, premultiplication can be completed which yields the useful 
identity 

(1, l}[A30002] = [A20021 (A.16) 

Therefore, lower-order hypermatrices can always be directly obtained. Note also that 
the order of matrix multiplication is important. Post multiplication of [A300021 
by {Q>e cannot be completed before premultiplication by {R}: . 

The hypermatrix concept generalizes readily for all k. For example, consider the 
element convection matrix [U], , equation (9). Assuming the velocity field divergence 
free yields, with scalar rearangement and for Cartesian one-dimensional space 

(A.17) 

The derivative of {die} with x is readily evaluated in terms of Si using the chain rule, 
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see equations (A.6)-(A.9). Assuming for illustration that k = 2, equation (A.17) 
becomes 

[II], = {U}: [A300121 

{I - 45,, 4(5, - c2), 4& - l} dji (A.18) 

Note that differentiation of {I$~} has extracted the common multiplier rl;l. Resultant 
integrations using equation (A.lO) will produce d, in the numerator; hence, [U], 
for 1 < k ,< 3 is element-independent. Proceeding through the algebra, the fully 
quadratic equivalent for convection becomes 

[A30012] = -! 
30 

(A.19) 

As with the mixed interpolation hypermatrix, the premultiplication of equation (A.19) 
by (U>z is required prior to any conventional matrix operations. The elements of 
equation (A.19) are stored in a DATA statement. 

Equation (10) defines an element matrix involving products of derivatives. Assuming 
the diffusion coefficient k,(x) interpolated linearly over R,l spanned by a Cartesian 
coordinate and neglecting the second term, yields, 

= -+ {k},’ [A3011K] 
e 

For 1 < k ,< 3, the resultant [A3011K] are: 

k = 1: [A30111] = 

(A.20) 

(A.21) 

5811343-3 
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I 2 l-3 I :1 

k = 2: [A301121 = ; 
I 

l-J;/ 1 ;;I (,;I 

:I l-3 I 13 

k = 3: 

(A.22) 

(A.23) 

The second terms in equations (lO)-(ll) correspond to the Galerkin-Weighted 
Residuals equivalent of a non-homogeneous gradient constraint on the solution 
domain closure, see equation (3). Since the cardinal bases degenerate to the Kronecker 
delta at node coordinates of R, , the integrals become point evaluations. Hence, 
from equation (41), and assuming the condition applied at node 1, the boundary 
gradient constraint matrices for Lagrangian interpolation for all k are imbedded 
within those for k = 3, which are trivially 

[AO] = (A.24) 

(A.25) 

The order of equations (A.24)-(A.25) are appropriately reduced to yield the equivalent 
for k < 3. 

Extension of the concepts to multi-dimensional space is straightforward, although 
the algebra can become very detailed. The multidimensional Taylor series 

qe(XJ = a + bx, + cx2 + dx, + ex,x, + *-* (A.26) 

forms the basis of construction of a cardinal basis. Three and four expansion 
coefficients are required evaluated, in terms of nodal values in equation (A.26), 
respectively for two and three-dimensional spaces. Hence, the “natural” element 
shapes are correspondingly the triangle and tetrahedron. Quadratic and cubic 
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functionals can be directly imposed by uniform extension of the developed one- 
dimensional concepts (cf., Ref. [19]). Both domain shapes are conveniently spanned 
by an (n + I)-dimensional, normalized linearly-dependent natural coordinate system, 
and the cardinal basis (&(x~)} involves polynomials on & . All integrals are evaluable 
analytically using the n-dimensional extension of equation (A.lO), 

n+1 s I-I n <;"dT = A, 4Pi) ! 
4. 1=1 (n + c;=:’ Pi) ! 

(A.27) 

where A, is the multi-dimensional measure of R,". 
The familiar parallel-sided solution domains are obtained by retaining the bilinear 

terms in the Taylor series, equation (A.24). This yields four and eight non-vanishing 
terms respectively for two- and three-dimensional space. Present purposes are served 
by restricting consideration to the two-dimensional rectangular-shaped domain 
spanned by the linearly independent ~7~ natural coordinate system, see Figure 1. 
The corresponding bilinear cardinal basis, equation (20), is determined by inspection, 
which yields the interpolation for qe as 

q&l 3 d = {41+h>3’ {Qle (A.28) 

The resultant two-dimensional bilinear form for the convection matrix [U], is 

(A.29) 

Equation (A.29) defines two, 4 x 4 square hypermatrices with elements of order 
four, since the subscript i is a summation index over the range of IZ = 2. Replacing 
{&+} with a cardinal basis constituted of higher-degree polynomials would increase 
the matrix orders respectively, as illustrated for the one-dimensional examples. 
Appendix B lists the various standard matrices required for solution of the sample 
problem. 

APPENDIX B: TWO-DIMENSIONAL FINITE-ELEMENT HYPERMATRICES 
FOR ADVECTION-DIFFUSION 

Differential Equation: 

Finite Element Algorithm: 

~FLWWQX + 4W)T P30011 + {V}:[B30021 + {XMU): [B3033]){Q),] = (0) 

03.2) 
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Finite Element Hypermatrices for Bilinear Interpolation on R2: 

[SZOO] = $ (B.3) 

[83001] = 
1 

144a 

~~30331 = [~3011] + [B3022] 

(B-4) 

(B.5) 

G3.6) 
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[B3011] = & 

1 
[~30221 = 96b2 

1 
ii 1 iI 3 3 I -3 -3 -1 -1 I 

3 
3 
1 
1 

(SW 

-1 1 
-1 1 
-1 
-1 0 1 

1 
1 

1 -1 
1 -1 
1 -1 
1 Ii 1 -1 
1 -1 
1 --I 
3 
3 iI I 

-3 
-3 

1 
1 
3 
3 

-(sw) 

Element Measure: Finite element spans 2a x 2b, see Figure 1 therefore 

(B.7) 

03.8) 

A, = 4ab 03.9) 
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